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Abstract

RL algorithms face significant challenges for long-horizon robot manipulation tasks in the
real-world due to sample inefficiency and safety issues. To overcome such challenges,
we propose a novel framework which combines RL from human feedback (RLHF) and
earning with primitive skills. Our algorithm, SEED, reduces human effort, and its
parameterized skills provide a clear view of the agent's high-level intentions, allowing
numans to evaluate skill choices before execution in a safer and more efficient manner.
SEED significantly outperforms state-of-the-art algorithms in sample efficiency and safety
and exhibits a substantial reduction of human effort compared to other RLHF methods.
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Introduction

Challenges of RL in real-world robotics:
sample inefficiency, safety concerns, and reward design

Our framework, SEED, integrates two approaches to overcome such issues:
1. learning from human evaluative feedback
2. primitive skill-based motion control.

State Observation

Benefits of SEED:

* Human feedback provide dense training signals.

* Skills represent robot's intent in an intuitive way.

* Evaluation without execution is safe & efficient at reduced human effort.

Parameterized Skills

Skills are implemented with Deoxys API operational space control for Franka Arm.

Pick(x, vy, 2) Place(x, vy, z) Push(x, y, z, delta)
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Action (Skill & Parameter)

* Skills as building blocks for manipulation tasks, with clear high-level intention.
* Parameters with clear semantic meanings.

(*: equal contribution, alphabetically ordered)
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* Hierarchical framework: skill policy and parameter policy
* Human feedback as reward: human evaluation instead of environment rewards
* Balanced replay buffer: equal number of good & bad samples in off-policy batch

— Goal: efficient learning without the burden of learning low-level control

* 1~3: Sweeping task
e 4~7: Collecting-Toy task
e 8~14: Cooking-Hotdog task (a task with the longest horizon)
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Simulation Experiments

Simulation tasks in Robosuite [1] with synthetic feedback.
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SEED is as efficient in a simple task, and far more successful in a complex task.
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Real-world Experiments
Cooking-Hotdog (Subgoal)
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SEED ensures better safety.
« SEED exhibited significantly lower safety violation: 3~7x lesser than baseline [4].

Safety Violation Ratio (%)

TAMER mMAPLE-aff = SEED
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Sweeping Collecting-Toys Cooking-Hotdog

Note: the risk of TAMER [3] is underestimated as one decision step corresponds to
one skill step, which involves around 100 low-level steps/feedback for TAMER.
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SEED significantly reduces human effort.
« SEED succeeded within the fixed amount of feedback, while TAMER failed.

 Human trainers adapted and learned to provide better feedback as well.
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Cumulative Reward
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